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1 . INTRODUCTION

The first step in designing an accelerator or storage ring is to choose an optimum pattern
of focusing and bending magnets, the lattice.  At this stage, non-linearities in the guide field are
ignored. It is assumed that the bending magnets are identical and have a pure dipole field.
Gradient magnets or quadrupoles have radial field shapes which have a constant slope,
unperturbed by higher-order multipole terms.

Before going too far in fixing parameters, the practical difficulties in designing the
magnets must be considered and the tolerances which can be reasonably written into the
engineering specification determined.  Estimates must be made of the non-linear departures
from pure dipole or gradient field shape, and of the statistical fluctuation of these errors around
the ring at each field level.

We must take into consideration that the remanent field of a magnet may have quite a
different shape from that defined by the pole geometry; that steel properties may vary during the
production of laminations;  that eddy currents in vacuum chamber and coils may perturb the
linear field shape.  Mechanical tolerances must ensure that asymmetries do not creep in.  At high
field the linearity may deteriorate owing to saturation and variations in packing factor can
become important.  Superconducting magnets will have strong error fields due to persistent
currents in their coils.

When these effects have been reviewed, tolerances and assembly errors may have to be
revised and measures taken to mix or match batches of laminations with different steel
properties or coils made from different batches of superconductor.  It may be necessary to place
magnets in a particular order in the ring in the light of production measurements of field
uniformity or to shim some magnets at the edge of the statistical distribution.  Even when all
these precautions have been taken, non-linear errors may remain whose effect it is simpler to
compensate with auxiliary multipole magnets.

Apart from the obvious need to minimize closed orbit distortion, these measures must be
taken to reduce the influence of non-linear resonances on the beam.  A glance at the working
diagram (Fig. 1) shows why this is so.  The QH, QV plot is traversed by a mesh of non-linear
resonance lines or stopbands of first, second, third, and fourth order.  The order, n, determines
the spacing in the Q diagram; third-order stopbands, for instance, converge on a point which
occurs at every 1/3 integer Q-value (including the integer itself).  The order, n, is related to the
order of the multipole which drives the resonance.  For example, fourth-order resonances are
driven by multipoles with 2n poles, i.e. octupoles.  Multipoles can drive resonances of lower-
order; octupoles drive fourth- and second-order; sextupoles third- and first-order, etc., but here
we simply consider the highest order driven.

The non-linear resonances are those of third-order and above, driven by non-linear
multipoles.  Their strength is amplitude-dependent so that they become more important as we
seek to use more and more of the machine aperture.  Theory used to discount resonances of
fifth- and higher-order as harmless (self-stabilized), but experience in the ISR, FNAL and SPS
suggests this is not to be relied upon when we want beams to be stored for more than a second
or so.

Each resonance line is driven by a particular pattern of multipole field error which can be
present in the guide field.  The lines have a finite width depending directly on the strength of the



Fig. 1 Working diagram or QH, QV plot showing the non-linear resonances in the operating 
region of the CERN SPS

error.  In the case of those driven by non-linear fields, the width increases as we seek to
exploit a larger fraction of the magnet aperture.  We must ensure that the errors are small
enough to leave some clear space between the stopbands to tune the machine, otherwise
particles will fall within the stopbands and be rapidly ejected before they have even been
accelerated.  In general, the line width is influenced by the random fluctuations in multipole
error around the ring rather than the mean multipole strength.

Systematic or average non-linear field errors also make life difficult.  They cause Q to be
different for the different particles in the beam depending on their betatron amplitude or
momentum defect.  Such a Q-spread implies that the beam will need a large resonance-free
window in the Q diagram.  In the case of the large machines, SPS, LEP, HERA, etc., the
window would be larger than the half integer square itself if we did not balance out the average
multipole component in the ring by powering correction magnets.

Paradoxically, when a "pure" machine has been designed and built, there is often a need
to impose a controlled amount of non-linearity to correct the momentum dependence of Q or to
introduce a Q-spread among the protons to prevent a high intensity instability.  Sextupole and
octupole magnets may have to be installed to this end and techniques studied which will enable
the control room staff to find the correct settings for these trim magnets once the machine
works.

Yet another set of multipole magnets is often required in a pulsed synchrotron to
deliberately excite non-linear betatron resonances and extract the beam in a long slow spill.

With modern computer control, the correction of closed orbit distortion due to linear field
errors has become a routine matter and, particularly in large accelerators, most of the emphasis
has shifted to calculation and elimination of the non-linear effects which prove to be of
considerable importance in the running-in of FNAL and the SPS.  In this talk I hope to outline
sufficient of the physics and mathematics of non-linearities to introduce the reader to this
important aspect of accelerator theory.



2 . MULTIPOLE FIELDS

Before we come to discuss the non-linear terms in the dynamics, we shall need to
describe the field errors which drive them.  The magnetic vector potential of a magnet with 2n
poles in Cartesian coordinates is:

  

A = An fn
n
∑ x,z( )  , (1)

where fn is a homogeneous function in x and z of order n.

Table 1
Cartesian solutions of magnetic vector potential

Multipole n Regular fn Skew fn
Quadrupole 2 x2 - z2 2xz
Sextupole 3 x3 - 3xz2 3x2z-z3

Octupole 4 x4 - 6x2z2 + z4 4x3z - 4xz3

Decapole 5 x5 - 10x3z2 + 5xz4 5x4z - 10x2z3 + z5

Table 1 gives fn(x,z) for low-order multipoles, both regular and skew.  Figure 2 shows
the distinction.  We can obtain the function for other multipoles from the binomial expansion of

  
fn x,z( ) = x + iz( )n  . (2)

The real terms correspond to regular multipoles, the imaginary ones to skew multipoles.

Fig. 2  Pole configurations for a regular sextupole and a skew sextupole

For numerical calculations it is useful again to relate An and field, remembering that for
regular magnets:
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As a practical example of how one may identify the multipole components of a magnet
by inspecting its symmetry, we digress a little to discuss the sextupole errors in the main
dipoles of a large synchrotron.

Let us look at a simple dipole (Fig. 3).  It is symmetric about the vertical axis and its field
distribution will contain mainly even exponents of x, corresponding to odd n values: dipole,
sextupole, decapole, etc.  We can see, too, that cutting off the poles at a finite width can
produce a virtual sextupole.  Moreover, the remanent field pattern is frozen in at high field
where the flux lines leading to the pole edges are shorter than those leading to the centre.  The
remanent magnetomotive force

  

Hc∫ dl

is weaker at the pole edges, and the field tends to sag into a parabolic or sextupole
configuration.  This too produces a sextupole.

These three sources of sextupole error are the principle non-linearities in a large machine
like the SPS.  Note that these sextupole fields have no skew component.  However, before
launching into nonlinearities let us examine a simple linear resonance.

Fig. 3 The field in a simple dipole.  The δN and δS poles superimposed on the magnet poles 
give the effect of cutting off the poles to a finite width.

3 . SECOND-ORDER RESONANCE

A small elementary quadrupole of strength δ(Kl) is located close to an F quadrupole

where βH = 
  
β̂ .  Suppose a proton describes a circular trajectory of radius a = 

  
εβ  and

encounters the quadrupole at phase:

  
Qϕ s( ) = Qθ  ,

where θ is the azimuth which corresponds exactly to ϕ at the quadrupoles of a FODO lattice.



The first step is to write down the unperturbed displacement at the small quadrupole:

x = a cos Qθ  . (5)

It receives a divergence kick (Fig. 4):

  ∆x' = ∆ Bl( ) / Bρ = ∆ Kl( )x / Bρ  .                                   (6)

The small change in 
  
β̂∆x' ,

  
∆p = β̂∆x'  , (7)

perturbs the amplitude, a, by

  
∆a = ∆p  sin Qθ  .

Even more significantly there is a small phase advance (Fig. 4):

  

2π∆Q = ∆p

a
cosQθ  . (8)

By successive substitution of Eqs. (7), (6). and (5), we get

  
2π∆Q = β̂ ∆ lK( )

Bρ( )  cos2Qθ  . (9)

Over one turn the Q changes from the unperturbed Q by

  
∆Q = β̂∆ lK( )

4π Bρ( ) cos 2Qθ + 1( )  . (10)

On the average this shifts Q by

  
∆Q = β̂∆ lK( )

4π Bρ( )  . (11)

Similarly the change in amplitude, a, is on average:

∆a

a
≈ 2π∆Q  .

The first term, however, tells us that, as the phase Qθ on which the proton meets the

quadrupole changes on each turn by 2π x (fractional part of Q), the Q-value for each turn
oscillates and may lie anywhere in a band

  
δQ = β̂∆ lK( )

4π Bρ( )  

about the mean value.



Fig. 4 Circle diagram shows effect of kick δpat phase Qθ advancing phase by

2π∆Q = (∆p cos Qθ)/a

Suppose this band includes a half-integer Q-value.  Eventually, on a particular turn, each
proton will have exactly this half-integer Q-value (Q = p/2).

Because the first term in Eq. (10) is cos 2Qθ, the amplitude increases by 2π∆Q on the

next and all subsequent turns.  The proton has been perturbed by the ∆(Kl) error to a Q-value
where it "locks on" to a half-integer stopband.  Once there, the proton repeats its motion every
two turns, and the small amplitude increase from the perturbation ∆a builds up coherently and
extracts the beam from the machine.

We can visualize this in another way by saying that the half-integer line in the Q diagram,

2Q = p   (p = integer) ,

has a finite width ±Q with respect to the unperturbed Q of the proton.  Any proton whose
unperturbed Q lies in this stopband width locks into resonance and is lost (Fig. 5).

In practice each quadrupole in the lattice of a real machine has a small field error.  The
∆(lK)'s are chosen from a random distribution with an r.m.s. value ∆(lK)rms.  If the N

focusing quadrupoles at β̂  have their principal effect, we can see that the r.m.s. expectation

value for δQ is, from Eq. (11),

  
δQ

rms
= N

2

β̂∆ Kl( )rms

4πBρ
 .

The factor √2 comes from integrating over the random phase distribution.  The statistical
treatment is similar to that used for estimating closed orbit distortion.

Now let us use some Fourier analysis to see which particular azimuthal harmonic of the
δ(Kl) pattern drives the stopband.  Working in normalized strength k = ∆K/(Bρ) we analyse the

function δ(βk) into its Fourier harmonics with

 δβk s( ) = ∑β̂kpcos pθ + λ( ) (12)
and



  

Fig. 5  Alternative diagrams showing perturbed Q and a stopband

β̂kp = 1
πR

dsδ βk s( )[ ]
0

2π

∫  cos pθ + λ( )  .

In general all harmonics i.e. all values of p, have equal expectation values in the random
pattern of errors.  We substitute the pth term in Eq. (12) into Eq. (6) and work through the steps
to obtain a new form for Eq. (10), namely:

2π∆Q =
β̂kp

2∫ cos pθ + λ( ) cos 2Qθ + 1{ }ds  .

The integration can be simplified by writing ds = Rdθ:

∆Q =
β̂kpR

4π
cos 2Qθ  

0

2π

∫ cos pθ + λ( )dθ  .

The integral is only finite over many betatron oscillations when the resonant condition is
fulfilled:

  
2Q = p  .

We have revealed the link between the azimuthal frequency p in the pattern of quadrupole
errors and the 2Q = p condition which describes the stopband.  For example, close to Q = 27.6
in the SPS lies the half-integer stopband 2Q = 55.  The azimuthal Fourier component which



drives this is p = 55.  Similarly, a pattern of correction quadrupoles, powered in a pattern of
currents which follows the function

  
i = i0  sin 55θ + λ( )  ,

can be used to compensate the stopband by matching i0 and λ empirically to the amplitude of the
driving term in the error pattern.

This has been used at the SPS, and in other machines powering sets of harmonic
correction quadrupoles, each with its own power supply.  We look for a sudden beam loss due
to a strong stopband at some point in the cycle where Q' and ∆p/p are large and gradient errors
important.  This loss will appear as a downward step in the beam current transformer signal.
We then deliberately make Q sit on the stopband at that point to enhance the step and alter the
phase and amplitude of the azimuthal current patterns of the harmonic correctors to minimize the
loss.  We may have to do this at various points in the cycle with different phase and amplitude.

Two sets of such quadrupoles are used:  one set near F lattice quadrupoles affecting
mainly 2QH = 55;  the other set near D quadrupoles affecting 2QV = 55.

4 . THE THIRD-INTEGER RESONANCE

The third-integer stopbands are driven by sextupole field errors and are therefore non-
linear.  First imagine a single short sextupole of length l, near a horizontal maximum beta
location.  Its field is

  

∆B = d2Bz

dx2 x2 = B"

2
x2  , (13)

and it kicks a particle with betatron phase Qθ by

  
∆p = βlB"

2Bρ
x2 = βlB"a2

2Bρ
cos2Qθ                                          (14)

inducing increments in phase and amplitude,

  

∆a

a
=

∆p

a
sin Qθ = βlB"a

2Bρ
cos2Qθ  sin Qθ                                   (15)

  
∆φ =

∆p

a
cos  Qθ = βlB"a

2Bρ
cos3Qθ                                         (16)

  
= βlB"a

8Bρ
cos 3Qθ + 3 cos Qθ( )  .                                      (17)

Suppose Q is close to a third integer, then the kicks on three successive turns appear as in
Fig. 6.  The second term in Eq. (17) averages to zero over three turns and we are left with a
phase shift:

  
2π∆Q = ∆φ = βlB"a  cos 3Qθ

8Bρ
 .                                   (18)



Fig. 6  Phase-space trajectory on a 3rd-order resonance

We can again guess how resonances arise.  Close to Q = p/3, where p is an integer,
cos 3Qθ varies slowly, wandering within a band about the unperturbed Q0 as in Fig. 5:

  
Q0 − βlB"a

16πBρ
< Q < Q0 + βlB"a

16πBρ
 .                                          (19)

As in the case of the half-integer resonance this is the stopband width but in reality is a
perturbation in the motion of the particle itself.

We can write the expression for amplitude perturbation

  

∆a

a
= βlB"a

8Bρ
sin 3Qθ  .                                                 (20)

Suppose the third integer Q-value is somewhere in the band.  Then, after a sufficient number of
turns, the perturbed Q of the machine will be modulated to coincide with 3p.  On each
subsequent revolution this increment in amplitude builds up until the particle is lost.  Growth is
rapid and the modulation of Q  away from the resonant line is comparatively slow.

Looking back at the expressions, we find that the resonant condition, 3Q = integer, arises
because of the cos3 Qθ term in Eq. (16), which in turn stems from the x2 dependence of the
sextupole field.  This reveals the link between the order of the multipole and that of the
resonance.

We see that the a2 in Eq. (14) leads to a linear dependence of width upon amplitude.  This
term was a1 in the case of the half integer resonance which led to a width which was
independent of amplitude and will become a3 in the case of a fourth-order resonance giving a
parabolic dependence of width upon amplitude.

It is also worth noting that the second term in Eq. (17), which we can ignore when away
from an integer Q-value, suggests that sextupoles can drive integer stopbands as well as third



integers.  Inspection of the expansion of cosnθ will suggest the resonances which other
multipoles are capable of driving.

Returning to the third-order stopbands, we note that both stopband width and growth rate
are amplitude-dependent.  If Q0 is a distance ∆Q from the third integer resonance, particles with
amplitudes less than

  
a <

16π Bρ( )∆Q

βlB"
                                                        (21)

will never reach a one third integer Q and are in a central region of stability.  Replacing the
inequality by an equality, we obtain the amplitude of the metastable fixed points in phase space
where there is resonant condition but infinitely slow growth (Fig. 7).

Fig. 7  Third-order separatrix

The symmetry of the circle diagram suggests there are three fixed points at θ = 0, 2π/3,

and 4π/3.  For a resonance of order, n, there will be n such points.

The fixed points are joined by a separatrix, which is the bound of stable motion.  A more
rigorous theory, which takes into account the perturbation in amplitude, would tell us that the
separatrix is triangular in shape with three arms to which particles cling on their way out of the
machine.

We have seen how a single sextupole can drive the resonance.  Suppose now we have an
azimuthal distribution which can be expressed as a Fourier series:

B" θ( ) = Bp
"∑  cos pθ  . (22)

Then

                ∆φ =
βBp

"

8Bρ∫
p

∑  cos 3Qθ cos pθdθ  .                                           (23)

This integral is large and finite if

  
p = 3Q . (24)



As in the earlier case of the second-order resonances this reveals why it is a particular
harmonic in the azimuthal distribution which drives the stopband.  It is not just the Fourier
spectrum of B"(θ) but of βB"(θ) which is important in this context.  Periodicities in the lattice
and in the multipole pattern can thus mix to drive resonances.

This is particularly important since some multipole fields, like the remanent field pattern
of dipole magnets, are inevitably distributed in a systematic pattern around the ring.  This
pattern  is rich in the harmonics of S, the superperiodicity.  Even when this is not the case and
errors are evenly distributed, any modulation of beta which follows the pattern of insertions can
give rise to systematic driving terms.  It is an excellent working rule to keep any systematic
resonance, i.e.

  
lQH + mQV = S  superperiod number( ) × integer= p (25)

out of the half integer square in which Q is situated.  This is often not easy in practice.

As in the second-order case, the third-order stopbands can be compensated with sets of
multipoles powered individually to generate a particular Fourier component in their azimuthal
distributions.  The above equation defines four numerical relations between QH and QV which
are resonant.  The keen student can verify this with an extension to the mathematics of the
previous section.  He will find that two of the lines are sensitive to errors of a sextupole
configuration with poles at the top and bottom, the other two to sextupoles with poles
symmetrical about the median plane (Fig. 2).  By permuting these two kinds of sextupoles with
the two types of location, we can attack the four lines more or less orthogonally.

5 . GENERAL NUMEROLOGY OF RESONANCES

We have seen how the Q-value at which the resonance occurs is directly related to a
frequency in the azimuthal pattern of variation of multipole strength.  We can now generalise
this.

Suppose the azimuthal pattern of a multipole of order n can be Fourier analysed:

  

B n−1( ) θ( ) = Bp
n−1( ) cospθ

p
∑  , (26)

where θ is an azimuthal variable, range 0 to 2π. We shall show that if the resonance is in one
plane only, a particular component, p = nQ, of this Fourier series, drives it.  For example, the
83rd azimuthal harmonic of sextupole (n = 3) drives the third-order resonance at Q = 27.66.
The more general expression is

  

lQH + mQV = p (27)

l + m = n  an integer( )  . (28)
Each n-value defines a set of lines in Fig. 1, four for third-order resonances, five for

fourth-order, etc.  Each line corresponds to a different homogeneous term in the multipole
Cartesian expansion (Table 1).  Some are excited by regular multipoles, others by skew
multipoles.

6 . SLOW EXTRACTION USING THE THIRD-ORDER RESONANCE

So far we have thought of resonances as a disease to be avoided, yet there is at least one
useful function that they can perform.

We have seen that a third-order stopband extracts particles above a certain amplitude, the
amplitude of the unstable fixed points which define a separatrix between stability and instability



(Fig. 7).  The dimensions of the separatrix, characterized by a are determined by ∆Q, the
difference between the unperturbed Q and the stopband.  As one approaches the third integer
by, say, increasing the focusing strength of the lattice quadrupoles, ∆Q shrinks, the unstable
amplitude, a, becomes smaller and particles are squeezed out along the three arms of the
separatrix.  If we make ∆Q shrink to zero over a period of a few hundred milliseconds, we can
produce a rather slow spill extraction.

At first sight we might expect only one third of the particles to migrate to positive x-values
since there are three separatrices, but it should be remembered that a particle jumps from one
arm to the next each turn, finally jumping the extraction septum on the turn when its
displacement is largest.  The septum is a thin walled deflecting magnet at the edge of the
aperture.

The growth increases rapidly as particles progress along the unstable separatrix, and if the
stable area is small compared with the distance between beam and septum, the probability of a
particle striking the septum rather than jumping over it is small.  It clearly helps to have a thin
septum.  The SPS it is a comb of wires forming a plate of an electrostatic deflector.

Magnet or quadrupole ripple can cause an uneven spill, making the Q approach the third
integer in a series of jerks thus modulating the rate at which particles emerge.  A spread in
momentum amongst the particles can help, however, since if the chromaticity is finite, we will
have swept through a larger range of Q-values before all separatrices for all momenta have
shrunk to zero.  The larger Q change reduces the sensitivity to magnet ripple.

7 . LANDAU DAMPING WITH OCTUPOLES

Another beneficial effect of multipoles is the use of octupoles to damp coherent transverse
instabilities due to the beam's own electromagnetic field.

For a transverse instability to be dangerous, the growth time must win over other
mechanisms which tend to destroy the coherent pattern and damp out the motion.  One such
damping mechanism is the Q-spread in the beam.  Coherent oscillations decay, or become
dephased, in a number of betatron oscillations comparable to 1/∆Q, where ∆Q is the Q-spread
in the beam.  This corresponds to a damping time, expressed in terms of the revolution
frequency, ω0/2π:

τd = 2π
ω0∆Q

 , (29)

which is just the inverse of the spread in frequencies of the oscillators involved, i.e. the
protons.  The threshold for the growth of the instability is exceeded when τg (which increases

with intensity) exceeds τd

τg = 2π
ω0∆Q

 . (30)

This is a very general argument which affects all instability problems involving
oscillators and is an example of Landau damping.  Thinking of it another way, we can say that
the instability never gets a chance to grow if the oscillators cannot be persuaded to act
collectively for a time τg.  If they have a frequency spread ∆ f, the time for which they can act

concertedly is just l/∆f.



Unfortunately, in our quest for a small ∆Q to avoid lines in the Q diagram by correcting
chromaticity, improvements in single particle dynamics can lower the threshold intensity for the
instability.  A pure machine is infinitely unstable.  In practice, at the SPS this happens at about
5 x 1012 particles per pulse if ∆Q is less than 0.02 and τg  about 1 msec.  Suddenly the beam
begins to snake under the influence of the resistive wall instability.  A large fraction of the beam
is lost before stability is restored.

The first remedy is to increase ∆Q.  Landau damping octupoles are installed for this
purpose in the SPS.  Octupoles produce an amplitude Q-dependence which is thought to be
more effective than the momentum-dependent Q-spread produced by sextupoles.  Each particle
changes in momentum during a synchrotron oscillation, and in a time comparable to τg all
particles have the same mean momentum.  Sextupoles do not spread the mean Q of the particles.
Octupoles, producing an amplitude Q-dependence, do.

The circle diagram can be used to calculate the effect of an octupole which gives a kick:

  
∆p = β ∆ Bl( )

Bρ
= βlB"'

3! Bρ( ) a3 cos3Qθ  . (31)

The change in phase is

  
2π∆p = ∆φ = βlB"' a2  cos4Qθ

6 Bρ( )  , (32)

which averages to

  
∆Q = βlB' "βa2

32πBρ
 . (33)

Of course if the octupoles are placed around the ring they can excite fourth-order
resonances.  A good rule is to have as many of them as possible and to distribute them at equal
intervals of betatron phase.  If there are S octupoles thus distributed their Fourier harmonics are
S, 2S, etc. and they can only excite structure resonances near Q values:

  
4Q = S×  an integer .

Although these systematic resonances are very strong it should not be difficult to choose
S so that Q is not in the same integer square as one of the values of nS/4.

*  *  *
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